23 research outputs found

    Ameliorative Effect and Underlying Mechanisms of Total Triterpenoids from Psidium guajava Linn (Myrtaceae) Leaf on High-Fat Streptozotocin-induced Diabetic Peripheral Neuropathy in Rats

    Get PDF
    Purpose: To investigate whether the total triterpenoids extracted from Psidium Guajava leaves (TTPGL) attenuate the development of diabetic peripheral neuropathy in rats by regulating the NF-ÎșB pathway of the inflammatory process and its signaling mediators.Methods: All the Sprague Dawley rats used were maintained in a clean environment on a 12 h light/12h dark cycle. High-fat feeding and intraperitoneal injection of 40 mg/kg streptozotocin (STZ) were used to induce diabetes in the rats. The rats were randomly divided into 5 groups: diabetic mellitus (DM) group; TTPGL - 30 group, TTPGL - 60 group and TTPGL - 120 group treated by intragastric administration (i.g) with 30, 100 and 120 mg/kg/day TTPGL, respectively. The well-established drug, rosiglitazone (RSG, 3 mg/k/d, i.g.), was used as positive control. Normal rats served as control group. Nerve conduction velocity and sensitive tests were measured on weeks 1, 4 and 8. After 8 weeks administration, expression of pro-inflammatory molecules (TNF - α, IL - 6 and iNOS) and tissue proteins (Akt, IKKα, and NF – ÎșB - p65) were evaluated to assess biochemical changes.Results: Compared to DM group, TTPGL (especially 120 mg / kg dose) treatment improved (p < 0.05) physical functions and provided neuronal protection in high - fat/streptozotocin - induced peripheral neuropathy rats. We found that the expressions of several pro - inflammatory factors such as tumor necrosis factor - α (TNF - α), IL - 6 and inducible nitric oxide synthase (iNOS) were highly suppressed (p < 0.05 or p < 0.01) by TTPGL in sciatic nerve. Mechanism analysis indicated that the ameliorative effect of TTPGL, in part, is through suppression of the expression of pro - inflammatory cytokines by NF - ÎșB pathway mediation.Conclusion: TTPGL offers a potential therapeutic approach for the treatment of diabetic peripheral neuropathy.Keywords: Triterpenoids, Psidium Guajava, Diabetic peripheral neuropathy, Pro inflammatory cytokines, NF-ÎșB pathwa

    A Chemical Lost Circulation Agent for Severe Leakage in Drilling

    No full text

    Styrene-Lauryl Acrylate Rubber Nanogels as a Plugging Agent for Oil-Based Drilling Fluids with the Function of Improving Emulsion Stability

    No full text
    With the exploration and development of unconventional oil and gas, the use frequency of oil-based drilling fluid (ODF) is increasing gradually. During the use of ODFs, wellbore instability caused by invasion of drilling fluid into formation is a major challenge. To improve the plugging property of ODFs, nano-sized poly(styrene-lauryl acrylate) (PSL) rubber nanogels were synthesized using styrene and lauryl acrylate through soap-free emulsion polymerization method and were characterized using FTIR, NMR, SEM, TEM, particle size analysis and TGA. The results show that, due to good dispersion stability and oil-absorbing expansion ability, the PSL rubber nanogels have a wide range of adaptations for nano-scale pores to deposit a layer of dense filter cake on the surface of filter paper with various pore diameters, reducing the filtration of mineral oil and W/O emulsion significantly. Due to the unique wettability, the PSL rubber nanogels can be adsorbed stably at the oil–water interface and form a dense granular film to prevent droplets coalescing, which improves the emulsification stability of W/O emulsion. Furthermore, the PSL rubber nanogels are soap-free and compatible with ODFs without foaming problems. The PSL rubber nanogels can increase the hole-cleaning performance of ODFs by raising viscosity and yield point. The PSL rubber nanogels outperformed hydrophobic modified nano silica and polystyrene nanospheres in plugging and filtration reduction. Therefore, the PSL rubber nanogels are expected to be used as a new plugging agent in oil-based drilling fluid. This research provide important insights for the use of organic nanogels in ODFs and the optimization of plugging conditions

    A Thermal-Responsive Zwitterionic Polymer Gel as a Filtrate Reducer for Water-Based Drilling Fluids

    No full text
    It is crucial to address the performance deterioration of water-based drilling fluids (WDFs) in situations of excessive salinity and high temperature while extracting deep oil and gas deposits. The focus of research in the area of drilling fluid has always been on filter reducers that are temperature and salt resistant. In this study, a copolymer gel (PAND) was synthesized using acrylamide, N-isopropyl acrylamide, and 3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate through free-radical polymerization. The copolymer gel was then studied using FTIR, NMR, TGA, and element analysis. The PAND solution demonstrated temperature and salt stimulus response characteristics on rheology because of the hydrophobic association effect of temperature-sensitive monomers and the anti-polyelectrolyte action of zwitterionic monomers. Even in conditions with high temperatures (180 °C) and high salinities (30 wt% NaCl solution), the water-based drilling fluid with 1 wt% PAND displayed exceptional rheological and filtration properties. Zeta potential and scanning electron microscopy (SEM) were used to investigate the mechanism of filtration reduction. The results indicated that PAND could enhance bentonite particle colloidal stability, prevent bentonite particle aggregation, and form a compact mud cake, all of which are crucial for reducing the filtration volume of water-based drilling fluid. The PAND exhibit excellent potential for application in deep and ultra-deep drilling engineering, and this research may offer new thoughts on the use of zwitterionic polymer gel in the development of smart water-based drilling fluid

    Polymer Gels Used in Oil–Gas Drilling and Production Engineering

    No full text
    Polymer gels are widely used in oil–gas drilling and production engineering for the purposes of conformance control, water shutoff, fracturing, lost circulation control, etc. Here, the progress in research on three kinds of polymer gels, including the in situ crosslinked polymer gel, the pre-crosslinked polymer gel and the physically crosslinked polymer gel, are systematically reviewed in terms of the gel compositions, crosslinking principles and properties. Moreover, the advantages and disadvantages of the three kinds of polymer gels are also comparatively discussed. The types, characteristics and action mechanisms of the polymer gels used in oil-gas drilling and production engineering are systematically analyzed. Depending on the crosslinking mechanism, in situ crosslinked polymer gels can be divided into free-radical-based monomer crosslinked gels, ionic-bond-based metal cross-linked gels and covalent-bond-based organic crosslinked gels. Surface crosslinked polymer gels are divided into two types based on their size and gel particle preparation method, including pre-crosslinked gel particles and polymer gel microspheres. Physically crosslinked polymer gels are mainly divided into hydrogen-bonded gels, hydrophobic association gels and electrostatic interaction gels depending on the application conditions of the oil–gas drilling and production engineering processes. In the field of oil–gas drilling engineering, the polymer gels are mainly used as drilling fluids, plugging agents and lost circulation materials, and polymer gels are an important material that are utilized for profile control, water shutoff, chemical flooding and fracturing. Finally, the research potential of polymer gels in oil–gas drilling and production engineering is proposed. The temperature resistance, salinity resistance, gelation strength and environmental friendliness of polymer gels should be further improved in order to meet the future technical requirements of oil–gas drilling and production

    Nano-laponite/polymer composite as filtration reducer on water-based drilling fluid and mechanism study

    No full text
    In drilling deep complex formations, most drilling fluid additives have insufficient temperature and salt tolerance, resulting in the decline of drilling fluid performance. This study used 2-acrylamide-2-methylpropane sulfonic acid, acrylamide, dimethyl diallyl ammonium chloride and modified nano-laponite to synthesize a nanocomposite filtrate reducer (ANDP) with excellent temperature and salt resistance, which can maintain the performance of drilling fluid. The structure of ANDP was analysed by a transmission electron microscope and an infrared spectrometer. The thermal stability of ANDP was studied by thermogravimetric analysis. The performance of ANDP was evaluated in a water-based drilling fluid. The mechanism was analysed per clay particle size distribution, Zeta potential, filter cake permeability and scanning electron microscopy imaging. The results show that ANDP has good thermal stability and the expected molecular structure. The filtration of freshwater drilling fluid after ageing at 200°C is 10.4 ml and that of saturated brine drilling fluid is 6.4 ml after ageing at 150°C. Mechanism analysis suggests that the ANDP increases the thickness of clay particle hydration layer and maintains the colloidal stability of the drilling fluid. ANDP inhibits the agglomeration of clay particles and significantly reduces the filtration by forming dense mud cake

    Improving the Weak Gel Structure of an Oil-Based Drilling Fluid by Using a Polyamide Wax

    No full text
    Oil-based drilling fluids (OBDFs) are widely used, but there are common problems associated with them, such as low yield point and poor cutting–carrying and hole cleaning ability. In this paper, a polyamide wax (TQ-1) was synthesized from dimeric acid and 1,6-hexanediamine to improve the weak gel structure of OBDFs. The TQ-1 was characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Then the effect of the TQ-1 on the stability of the water-in-oil emulsion was studied by sedimentation observation, stability analysis, an electrical stability test, and particle size measurement. The effect of the TQ-1 on the rheological properties of the water-in-oil emulsion was analyzed by viscosity vs. shear rate test and the three-interval thixotropic test. Finally, the performance of the TQ-1 in OBDFs was comprehensively evaluated. The experimental results showed that the initial thermal decomposition temperature of the TQ-1 was 195 °C, indicating that the TQ-1 had good thermal stability. After adding the TQ-1, the emulsion became more stable since the emulsion stability index (TSI) value decreased when the emulsions were placed for a period of time and the demulsification voltage was increased. The TQ-1 could form a weak gel structure in the water-in-oil emulsions, which made the emulsions show excellent shear thinning and thixotropy. TQ-1 can improve the demulsification voltage of OBDFs, greatly improve the yield point and gel strength, and largely reduce the sedimentation factor (SF). In addition, TQ-1 has good compatibility with OBDFs, and in our study the high-temperature and high-pressure (HTHP) filtration decreased slightly after adding the TQ-1. According to theoretical analysis, the mechanism of TQ-1 of improving the weak gel structure of OBDFs is that the polar amide group can form a spatial network structure in nonpolar solvents through hydrogen bonding

    Nano-Modified Polymer Gels as Temperature- and Salt-Resistant Fluid-Loss Additive for Water-Based Drilling Fluids

    No full text
    With the continuous exploration and development of oil and gas resources to deep formations, the key treatment agents of water-based drilling fluids face severe challenges from high temperatures and salinity, and the development of high temperature and salt resistance filtration reducers has always been the focus of research in the field of oilfield chemistry. In this study, a nano-silica-modified co-polymer (NS-ANAD) gel was synthesized by using acrylamide, isopropylacrylamide, 2-acrylamide-2-methyl propane sulfonic acid, diallyl dimethyl ammonium chloride, and double-bond-modified inorganic silica particles (KH570-SiO2) through free radical co-polymerization. The introduction of nanotechnology enhances the polymer’s resistance to high temperature degradation, making it useful as a high-temperature-resistant fluid loss reducer. Moreover, the anions (sulfonates) and cations (quaternary ammonium) enhance the extension of the polymer and the adsorption on the surface of bentonite particles in a saline environment, which in turn improves the salt resistance of the polymer. The drilling fluids containing 2.0 wt% NS-ANAD co-polymer gels still show excellent rheological and filtration performance, even after aging in high temperature (200 °C) and high salinity (saturated salt) environments, showing great potential for application in deep and ultra-deep drilling engineering

    Study on the Low-Temperature Rheology of Polar Drilling Fluid and Its Regulation Method

    No full text
    Drilling fluid is the blood of drilling engineering. In the polar drilling process, the ultra-low temperature environment puts high demands on the rheological performance of drilling fluids. In this paper, the effects of temperature, ice debris concentration and weighting agent on the rheological properties of drilling fluids were studied. It was found that the lower the temperature and the higher the ice debris concentration, the higher the drilling fluid viscosity, but when the ice debris concentration was below 2%, the drilling fluid rheology hardly changed. Secondly, the low temperature rheological properties of drilling fluid were adjusted by three different methods: base fluid ratio, organoclay, and polymers (dimer acid, polymethacrylate, ethylene propylene copolymer, and vinyl resin). The results showed that the base fluid rheological performance was optimal when the base fluid ratio was 7:3. Compared with polymers, organoclay has the most significant improvement on the low temperature rheological performance of drilling fluid. The main reason is that organoclay can transform the drilling fluid from Newtonian to non-Newtonian fluid, which exhibits excellent shear dilution of drilling fluid. The organoclay is also more uniformly dispersed in the oil, forming a denser weak gel mesh structure, so it is more effective in improving the cuttings carrying and suspension properties of drilling fluids. However, the drilling fluid containing polymer additives is still a Newtonian fluid, which cannot form a strong mesh structure at ultra-low temperatures, and thus cannot effectively improve the low-temperature rheological performance of drilling fluid. In addition, when the amount of organoclay is 2%, the improvement rate of the yield point reaches 250% at −55 °C, which can effectively improve the cuttings carrying and suspension performance of drilling fluid at ultra-low temperature

    Novel Polymer Material for Efficiently Removing Methylene Blue, Cu(II) and Emulsified Oil Droplets from Water Simultaneously

    No full text
    The pollution of water resources has become a worldwide concern. The primary pollutants including insoluble oil, toxic dyes, and heavy metal ions. Herein, we report a polymer adsorbent, named SPCT, to remove the above three contaminants from water simultaneously. The preparation process of SPCT contains two steps. Firstly, a hydrogel composed of sulfonated phenolic resin (SMP) and polyethyleneimine (PEI) was synthesized using glutaraldehyde (GA) as the crosslinking agent, and the product was named SPG. Then SPCT was prepared by the reaction between SPG and citric acid (CA) at 170 ∘ C. SPCT exhibited an excellent performance for the removal of methylene blue (MB) and Cu(II) from aqueous solution. For a solution with a pollutant concentration of 50 mg L−1, a removal efficiency of above 90% could be obtained with a SPCT dosage of 0.2 g L−1 for MB, or a SPCT dosage of 0.5 g L−1 for Cu(II), respectively. SPCT also presented an interesting wettability. In air, it was both superhydrophilic and superoleophilic, and it was superoleophobic underwater. Therefore, SPCT could successfully separate oil-in-water emulsion with high separation efficiency and resistance to oil fouling. Additionally, SPCT was easily regenerated by using dilute HCl solution as an eluent. The outstanding performance of SPCT and the efficient, cost-effective preparation process highlight its potential for practical applications
    corecore